Categories

When in Doubt, Retrofit

Have you ever looked up to your house or even office’s windows and remarked, ‘Hey, they need a change!’? Well, that certainly is not as uncommon as one might think. Glass doors and windows are the essence of every new building ever made. And since buildings do not need a revamping every other year, it is fair to say that doors and windows are often their longest lasting structures (apart from the walls, of course!).
Yet, given how important the role of windows is in not only serving as conduits of light and ventilation but also creating a fully-functional and modern space, there comes a time when one must give thought to changing the old windows.

This is where we tell you what retrofitting buildings with shiny and functional glass windows is all about.
Considering window renovation
Any sort of renovation is a hectic job. Not only do you need to identify the issues for repair but also research in the market for the ideal solution. Any such consideration has to be made after careful thought and planning since investment in architectural revamp, especially that of glass windows, will leave a result in place that will last for decades.
Moreover, when one considers window renovation, a lot of factors need to be dealt with. First is figuring out the right window for a particular functional need. Second is the expense incurred and the time taken to remove the old windows and replace them with new ones. Third is the impact which such a renovation might have on your property – what if your old windows add heritage value, thus leaving you reluctant to replace them altogether?
This is where retrofitting glass can be the ideal option for you. In retrofitting, a new, modern glazing will be installed atop your existing one from the inside. Time-saving and efficient, retrofitted windows are becoming increasingly popular in today’s world.
Retrofitting – A viable alternative
As mentioned before, retrofitting your building’s glass windows will help you save on the time and cost incurred in removing the existing windows and then installing the new ones. Thus, it is a quick solution for modern professionals who desire the least disruption in their lives.
Moreover, since glass windows are retrofitted from the inside, the look of your home or office from the outside will remain the same. This is perfect for those who do not want to change the aesthetics and veer towards maintaining the heritage and antiquity of their home or office.
Finally, another benefit that retrofitting offers is that your windows will get double glazeGlad, thus offering you increased insulation from heat, dust, pollution, and noise. Glass manufacturers such as AIS have come up with modern retrofitting solutions such as AIS Renew – a low-E energy-saving insulated glass that filters out sun’s heat without cutting down on natural lighting. It only takes 30-60 minutes to install one such window that also offers excellent reduction in dew condensation and low maintenance.
Perhaps most importantly, retrofitting your windows with energy-efficient glass will turn your building into a green one, thus helping you do your bit to protecting our precious environment.
Ready for a retrofit?

Categories

How Can You Tackle Air Pollution with Glass?

You would believe that winters in India are welcomed with much celebration as they bring respite from the harsh summer heat. Yet, come November, and suddenly the picture doesn’t look so rosy anymore. Cue the menace of air pollution.
Over the last few years, air pollution levels in urban centres of the country have risen steadily and have now reached alarming levels. This issue is made all the more prominent in the cold weather as fog mixes with the pollutants to give rise to smog – an extremely unhealthy air that we have now become accustomed to breathing.

So, amidst it all, how can glass technology help?
Since one spends the maximum amount of time in a day indoors, either at home or an office, the solution to air pollution lies in staying as far away from it as possible. Such a solution is possible in the realm of architecture wherein our windows and other outlets in the building a sealed and secure enough to prevent any leakage of the polluted air inside. Therefore, all you need is a sophisticated glass window system that will keep you and your loved ones safe from the smog.
Stay safe indoors with Anti-Pollution Windows
Yes, you heard that right. As a leading glass company in India, AIS has always believed in the power of innovation to solve some of the most concerning architectural issues for customers and businesses, be it at homes or offices. With the same spirit of innovation in mind, our experts have created special Anti-Pollution and Anti-Smog Windows retailed by Glasxperts that promise to save you and your loved ones from the damaging effects of air pollution.
The idea, as you might have guessed, revolves around completely sealing air leakages and spaces inside so as to prevent the external environment from leaking inside homes and offices. How is this done? Let’s have a look:

  • Fusion-welded windows with a multi-lock system

High-quality gaskets and joints strongly seal the windows along with exceptional fusion welded joints. Such physical constructs in the specialized window system make it almost impossible for pollutants to enter inside and wreak havoc. Moreover, you can make sure that these windows close extremely tightly with the help of the advanced multipoint locking system in place.

  • Silicon to shut off gaps

A popular material used in various industries, silicon proves its merit in the anti-pollution window in the form of a special sealant that shits down any gaps – both in the window and the adjacent wall.

  • Double glazing in unit glasses

Moving on to the glass, you can rest assured of multi-chambered profiles and multiple layers that make it incredibly difficult for any minute percentage of outside air that has leaked inside to reach beyond the glazing. This advanced technique of providing completely sealed Double Glazing Units also enables the windows to prevent heat and sound to leak inside.

  • The ease of retrofitting

Finally, you might be thinking what a cumbersome and expensive task it would be to remove your existing windows and replace them with special anti-pollution ones. Well, these windows by AIS can be easily retrofitted on any window surface, thus freeing you of all the hassle. Retrofitting essentially means fitting a new window surface on top of the existing one, thus improving the efficiency of the entire system!

Categories

Daylight Analysis & Glazing Selection: A Case Study


Natural lighting is an extremely important part of any building – simply because it is beneficial to both comfort and energy efficiency of an interior space. Having ideal natural lighting inside a building can reduce the dependency on artificial lighting and create a much more holistic environment for rest, relaxation and work.
Yet, enabling the perfect balance of natural light within a building is not merely a function of using a glazing which will reflect heat and filter light. It depends on quite many factors, including the building orientation, the appropriateness of light diffusers installed, and also the kind of façades and windows in place. Thus, architect and building owners must conduct a thorough daylight analysis of any building in order to suggest glass that minimises discomfort and maximises visibility. Only after analysing the results of such a study can one opt for retrofitting buildings with low-E glass or going for a new glazing with the ideal U-value and SHGC.
This is what we performed for a corporate building in Mumbai.
CHALLENGE
A corporate building in Mumbai required an optimum glazing solution to maximize its VLT (visible light transmission) requirement without overdesigning the building.
SOLUTION
Going by the specifications of glass, one with the lowest U-value and SHGC would have been the right solution for the corporate building. Yet the solution was not so easy.
In order to determine the effect of various glazing variants on the building, a daylight analysis was performed. The two glazing variants simulated for the building were Clear Glass (VLT 78%) and high performance glass (VLT 21%). Both the glasses performed identically in terms of achieving the optimal lux levels. Clear Glass, in fact, caused glare in certain portions of the building.

As can be seen in Fig. 2, the first case is Clear Glass (VLT = 78%). The pink region shows the area which will have glare, and the grey region indicates sub-optimal lighting. The second case is high-performance glass (VLT = 21%). Here, we can see the reduction in glare area without reducing optimum lux level.
Thus, AIS recommended using high-performance glass in order to reduce cooling load without compromising on the lighting load.
RESULTS
From the study conducted, the following results were deduced:

  • The same fenestration behaves differently depending on the specific design.
  • It should not be assumed that products with low U-Value and SHGC are the best and universal solution.
  • For windows receiving a high amount of solar radiation, products with low SHGC would perform better. Hence, a glazing solution should be selected only after thoroughly analysing the building design.

As mentioned earlier, architects and glass manufacturers have to study various factors in building design before selecting the ideal glazing. An important factor is window orientation and area which allows ideal dispersion of daylight without causing glare or excess heat gain. It has been observed that south-facing windows let in the highest amount of daylight while north-facing windows let in diffused and reflected glare-free light. On the other hand, east- and west-facing windows let in direct sunlight, glare, and heat gain, which are difficult to manage. Thus, different glazing solutions are required for different orientations, especially in the kind of building mentioned in the case study.

Categories

Daylight Analysis & Glazing Selection: A Case Study

Natural lighting is an extremely important part of any building – simply because it is beneficial to both comfort and energy efficiency of an interior space. Having ideal natural lighting inside a building can reduce the dependency on artificial lighting and create a much more holistic environment for rest, relaxation and work.

Yet, enabling the perfect balance of natural light within a building is not merely a function of using a glazing which will reflect heat and filter light. It depends on quite many factors, including the building orientation, the appropriateness of light diffusers installed, and also the kind of façades and windows in place. Thus, architect and building owners must conduct a thorough daylight analysis of any building in order to suggest glass that minimises discomfort and maximises visibility. Only after analysing the results of such a study can one opt for retrofitting buildings with low-E glass or going for a new glazing with the ideal U-value and SHGC.

This is what we performed for a corporate building in Mumbai.

CHALLENGE

A corporate building in Mumbai required an optimum glazing solution to maximize its VLT (visible light transmission) requirement without overdesigning the building.

SOLUTION

Going by the specifications of glass, one with the lowest U-value and SHGC would have been the right solution for the corporate building. Yet the solution was not so easy.

In order to determine the effect of various glazing variants on the building, a daylight analysis was performed. The two glazing variants simulated for the building were Clear Glass (VLT 78%) and high performance glass (VLT 21%). Both the glasses performed identically in terms of achieving the optimal lux levels. Clear Glass, in fact, caused glare in certain portions of the building.

As can be seen in Fig. 2, the first case is Clear Glass (VLT = 78%). The pink region shows the area which will have glare, and the grey region indicates sub-optimal lighting. The second case is high-performance glass (VLT = 21%). Here, we can see the reduction in glare area without reducing optimum lux level.

Thus, AIS recommended using high-performance glass in order to reduce cooling load without compromising on the lighting load.

RESULTS

From the study conducted, the following results were deduced:

  • The same fenestration behaves differently depending on the specific design.
  • It should not be assumed that products with low U-Value and SHGC are the best and universal solution.
  • For windows receiving a high amount of solar radiation, products with low SHGC would perform better. Hence, a glazing solution should be selected only after thoroughly analysing the building design.

As mentioned earlier, architects and glass manufacturers have to study various factors in building design before selecting the ideal glazing. An important factor is window orientation and area which allows ideal dispersion of daylight without causing glare or excess heat gain. It has been observed that south-facing windows let in the highest amount of daylight while north-facing windows let in diffused and reflected glare-free light. On the other hand, east- and west-facing windows let in direct sunlight, glare, and heat gain, which are difficult to manage. Thus, different glazing solutions are required for different orientations, especially in the kind of building mentioned in the case study.

Categories

Breathing Life Back into an Old Office Building: A Case Study on Retrofitting Glass


Architecture, today, is exceeding the limits of imagination with the help of science and technology. Where once glass was a mere brittle material for windows now lies a plethora of possibilities in manufacturing and processing extremely functional glass for sound reduction, security, privacy, aesthetics, and most importantly, heat reduction. But the buck doesn’t stop here.
It is also possible to optimize the dysfunctional glass systems of existing and functioning buildings with a special variant of glass such as the AIS Renew which completely transforms the energy consumption scenario of the space. Retrofitting buildings is a specialty at AIS, and it is precisely what we achieved for the 6-storied office building which is the focus of our case study.
Problem
It is no doubt that solar and thermal control glass products are any architect’s go-to solutions for creating an energy efficient space. And energy efficiency is the primary requirement of an office where creating the most comfortable and sustainable environment for employees is paramount for productivity.
A six-storied office building featuring glazed windows prominently was facing issues due to increased energy consumption. The requirement was to convert the windows into more energy efficient envelopes, thus enabling visual and thermal comfort. However, converting an old/existing building built with a low performance glass by the traditional method of pulling down the existing glass façade and building afresh is very expensive.
Solution

In order to tackle this problem without disturbing and interfering with the day-to-day functioning of the building, the AIS technical team proposed our retrofitting solution, AIS Renew, as part of the AIS 4G solutions. AIS Renew is a unique product which is attached on top of an existing glass window and converts it into an energy saving insulated glass window – all in no time at all.
In order to do this, a particular AIS Renew glass model (Ecosense Exceed as mentioned in the table above) was compared against pared with clear 6 mm glass used in the existing building. An analysis was done on the basis of shade, visible light transmission, solar heat gain coefficient, and U-value.
Further, a building-specific climate simulation was also performed for the existing glass and AIS Renew glass. The results of this analysis are mentioned below.

Results

As is clear from the reference table, AIS Renew with Ecosense Exceed performed better than the clear single glazed units and double glazed units in terms of cooling energy reduction ratio % and radiant temperature.  In brief, selecting AIS Renew for retrofitting would result in:

  1. Reduced solar gain in summer thereby reaching the set temperature sooner, thus reducing the load on AC operation.
  2. Insulation of the building against heat due to its lower U-value by influencing long wave infrared radiation while keeping the space cool in summer and warm in winter.
  3. A shorter payback period compared to extra glass cost which would have been used for replacement.

Thus, with a thoroughly scientific analysis of the retrofit, glass manufacturers like AIS ensure the most ideal retrofitting glass solution for your office building, resulting in substantial energy, cost and time savings.