

For AIS Ceramic Frit Glass

from Asahi India Glass Ltd.

In accordance with ISO 14025: 2006 & EN 15804:2012

+A2:2019/AC: 2021

PROGRAMME OPERATOR	EPD International AB
GEOGRAPHICAL SCOPE	Global
EPD REGISTRATION NUMBER	EPD-IES-0024591
PUBLICATION DATE	2025-06-18
REVISION DATE	2025-09-03
VALID UNTIL	2030-06-17

Program Information

The International Organization for Standardization (ISO) 14025 defines an Environmental Product Declaration (EPD) as a Type III declaration that quantifies environmental information about a product's life cycle. Based on ISO series 14040, the Life Cycle Assessment (LCA) forms the basis of the EPD approach. EPDs are primarily meant to assist business-to-business interactions, but they may also be useful to environmentally conscious consumers when purchasing goods or services.

Programme:	The International EPD® System					
Declaration Holder:	Asahi India Glass Ltd. (AIS)					
Declaration Number:	EPD-IES-0024591					
Declared Products:	AIS Ceramic Frit Glass					
Address:	EPD International AB, Box 21060, SE-100 31 Stockholm, Sweden					
Website:	www.envirodec.com; www.envirodecindia.com					
Email:	Info@envirodec.com					
Product Category Rules (PCR):	PCR 2019 :14 Construction products (EN 15804 :2012: A2 version 1.3.4 and its c-PCR-009 Flat glass products used in buildings and other construction works (EN17074:2019)					
Verification and reference PCR:	CEN standard EN 15804 serves as the core Product Catego Rules (PCR)					
The PCR review was conducted by:	The Technical Committee of the International EPD System. S www.envirodec.com for list of members. Review chair: Claud A. Pen a, University of Concepcion, Chile. The review panel member be contacted via the Secretaria www.environdec.com/contact .					
Independent third-party verification of	the declaration and data, according to ISO 14025:2006:					
EPD process verification	EPD verification					
This declaration was independently verified in accordance with ISO 14025:2006 by:	Sunil Kumar SIPL Pvt Ltd sunil@sipl-sustainability.com					
This life cycle assessment and EPD design was conducted by:	Suraj Shekhar, Sustainability Consultant, The ESG Advisory suraj.shekhar@theesgadvisory.in					
Address and Contact of the EPD Owner:	Asahi India Glass Ltd. Taloja MIDC, Plot- T7, MIDC Road, Mumbai, Raigad, Maharashtra, 410208 Contact person: Mr. Nagendra Kumar Email Adress - nagendra.kumar@aisglass.com					

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

EPDs within the same product category but registered in different EPD programs, or not compliant with EN 15804, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterization factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.

Company Information

Asahi India Glass Ltd. (AIS) is India's leading integrated glass and window solutions company and a dominant player both in the automotive and the building & construction segments. Our product solutions, spanning the entire breadth of automotive, building & construction, and consumer glass, are designed to deliver aesthetics and functional benefits. Starting operations in 1987, AIS is an outcome of a Joint Venture between the Labroo family, Asahi Glass Co. Limited Japan (now AGC Inc.), and Maruti Udyog Limited (now Maruti Suzuki India Limited., MSIL)

AIS' presence extends across India with around **15 plants** and **4 sub-assemblies** and 6 offices. Our worldwide presence is across nations like Sri Lanka, Africa and many parts Middle East Asia. To focus better on specific market segments and to serve customers better, AIS has organized its business into 3 Strategic Business Units (SBUs):

- · Automotive
- Building & Construction
- · Consumer Glass

It is engaged in production and delivery of next generation glass products and solutions to retail and institutional customers though these SBUs and provides end-to-end solutions across the entire value chain - from manufacturing of float glass to glass processing, fabrication and installation.

AIS has been honored with awards and recognition as acknowledgement of its contributions to the glass industry. Corporate governance is an intrinsic part of the Company. AIS is committed to achieving the highest standards of accountability, transparency, and equity in all its spheres and dealings with its stakeholders. AIS is an **ISO 9001** and **ISO 14001** company listed on the National Stock Exchange Limited and Bombay Stock Exchange Limited.

With the development of innovative construction techniques and glass-processing methods, AIS products are manufactured to deliver superior performance and added value. Our manufacturing units are equipped with state-of-the-art machinery that delivers a full range of high-quality processed and value-added glass products meeting international standards.

At AIS, we do not compromise on the quality of the product that we deliver. Our products are put through stringent inspections in our well-equipped laboratory and testing facilities to ensure the highest quality. After inspection, they are stored in a clean environment. All our products adhere to ISO 9001:2015, IS 2553 Part-1 for tempered & laminated glasses & IS 2553 Part 2 for Tempering.

Company Information

Product Information

AIS Ceramic Frit

AIS manufactures Ceramic Frit Glass both at their Architectural and Automotive plants located at multiple locations- Taloja, Roorkee, Bangalore, Bawal, Patan and Chennai.

Ceramic Fritting is a process by which glass enamel is fused on the glass surface. Before the glass is heat strengthened or tempered, Ceramic frit is applied to the glass through a fine mesh screen with glass enamel. After tempering or heat strengthening, the glass enamel becomes a permanent coating which cannot be further damaged or removed by cleaning, scrubbing, etc.

Intended Use

AIS Ceramic Frit is a type of enamel painted tempered glass that can be used for decorative purposes. It can be used in curtain walls, glazing systems, shower cubicles, glass doors, and partitions in architectural interiors & exteriors.

UN CPC Code: 3711

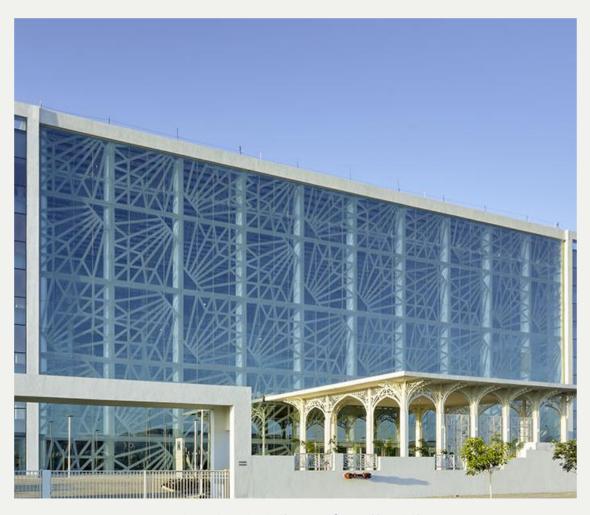


Figure: Ceramic Frit Glass manufactured by AIS Glass

Ceramic Frit Glass is available in a range of thicknesses, from 3 mm to 12 mm.

Thickness (mm)	Density g/cm3	Glass Weight (kg)
3	2.5	7.50
3.5	2.5	8.75
4	2.5	10.00
5	2.5	12.50
5.5	2.5	13.75
6	2.5	15.00
8	2.5	20.00
10	2.5	25.00
12	2.5	30.00

Content Declaration

Table: Content Declaration of 1m² Ceramic Frit

Product Components	Weight, kg
Base Glass	12.7
Ceramic Ink	0.75

Packaging and product used: None

Till this date of issue of this declaration, there is no "Substance of Very High Concern" (SVHC) in concentration above 0.1% by weight, and neither do their packaging, following the European REACH regulation (Registration, Evaluation, Authorization and Restriction of Chemicals).

Life Cycle Assessment

Geographical scope:	Global
Declared unit:	One square metre (1 m²)
Declared Product:	Ceramic Frit Glass
UN CPC Code	3711
Reference service life:	A reference service life of 30 years is used for this EPD, as prescribed in EN 17074:2019.
Time representativeness:	Primary data from the manufacturing site, suppliers, and the electricity mix were collected for the period starting from FY 2023 -FY 2024
Database(s) and LCA software used:	Ecoinvent v3.10 (allocation, cut-off by classification) database and SimaPro v9.6 software have been used for the LCA calculations. LCA methods used are EN 15804: A2; EF3.1 compliant.
Description of system boundaries	Cradle to grave with Module D (A+B+C+D)
Data quality and data collection:	According to EN 15804:2012+A2:2019/AC:2021 specific data was used for module A3 (Processes the manufacturer has influence over) and was gathered from the Asahi India Glass Limited Manufacturing unit. Specific data includes actual product weights, amounts of raw materials used, product content, energy consumption, transport figures, water consumption, and amounts of waste.
Allocation:	In this study, allocation has not been applied.
Cut-off rules:	Life Cycle Inventory data for a minimum of 99 % of total inflows to the life cycle stages have been included and a cut-off rule of 1% regarding energy, mass and environmental relevance was applied. Impacts caused by treatment operations have been calculated lower than 1% environmental relevance.

According to EN 15804+A2, EPD of construction products may not be comparable if they do not comply with this standard. According to ISO 21930, EPD might not be comparable if they are from different programs

Modules Declared, Geographical Scope, Share of Specific Data and Data Variation

Table: Modules Declared, Geographical Scope, Share of Specific Data and Data Variation

	Produc	ct stage		nstruct cess st		Use stage End-of-life stage						Resource recovery stage					
X: Declared ND: Not declared.	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Recycling potential
Module	A1	A2	А3	A4	A5	B1	В2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
Modules declared	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Geography	GLO	GLO	IN	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO
Specific data used		>87		-	-	-	-	-	-	-	-	-			-		-
Variation – products	R	Not televant		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites	R	Not televant		-	-	-	-	-	-	-	-	-	-	1	-	-	-

Declaration of Sources and Share of Primary Data

Table: Declaration of Sources and Share of Primary Data

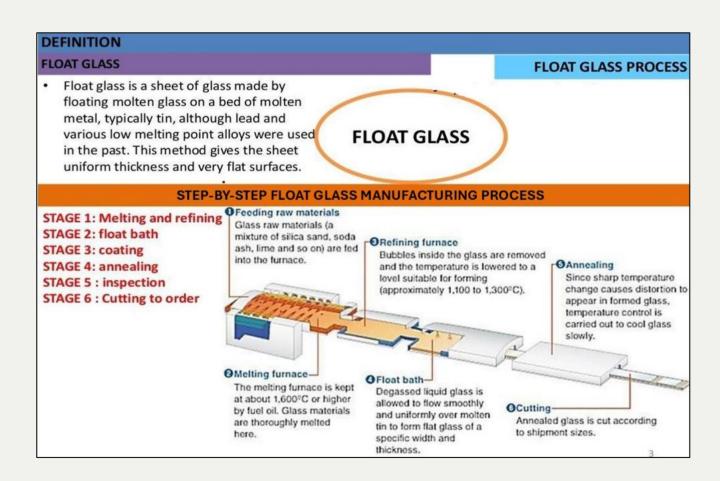
Process	Source type	Source	Reference Data category Year		%Share of primary data of GWP-GHG results for A1-A3	
Base Glass	EPD	EPD-IES-0024574	2024	Primary Data	69.7	
Ceramic Ink	Database	Ecoinvent 3.10	2024	Secondary Data	5.3	
Electricity	Collected+Database	SIPL+Ecoinvent 3.10	2024	Primary Data	5.2	
Transportation	Collected+Database	SIPL+Ecoinvent 3.10	2024	Primary Data	12.6	

Note: The share of primary data is calculated based on GWP-GHG results. It is a simplified indicator for data quality that do not capture all relevant aspects of data quality. The indicator is not comparable across product categories.

Manufacturing Flow Chart

The main steps in float glass manufacturing process are:

3.2.1 Batch Mixer


Mix of raw materials (silica, soda ash, lime, feldspar and dolomite) to which is added recycled glass (cullet) and other compounds.

3.2.2 Float Glass Production

Raw materials are melted at 1550 $^{\circ}$ C in a furnace by fuel oil. Bubbles inside the glass are removed and the temperature is lowered to a level suitable for forming (1100 to 1300 $^{\circ}$ C). The molten glass is fed into a bath of molten tin. The glass floats on this flat surface and is drawn off in a ribbon. Serrated wheels, or top rolls, pull and push the glass sideways depending on the desired thickness (from 3 to 12 millimeters).

3.2.3 Annealing

Since the sharp temperature change causes distortion to appear in formed glass, temperature control is carried out to cool glass slowly. The glass is lifted onto conveyor rollers and passes through a controlled cooling tunnel measuring more than 150 meters in length.

3.2.4 Processing

The frit is mixed with pigments and solvents to create a ceramic ink. This ink is applied to the surface of annealed glass using a fine mesh screen. The screen printing process allows for the creation of intricate patterns and designs on the glass surface.

3.2.5 Drying

After printing, the glass is dried to remove any solvents from the ceramic ink, ensuring that the frit adheres properly to the glass surface.

3.2.6 Heat Treatment (Tempering)

The dried glass is then subjected to heat treatment in a tempering furnace. This step fuses the frit to the glass surface, creating a permanent, durable coating that is resistant to abrasion, chemicals, and weathering.

3.2.7 Cooling and Inspection

The tempered glass is gradually cooled to room temperature. It is then inspected for quality, ensuring that the frit has bonded correctly and that the glass meets the required specifications.

3.2.8 Storage and Dispatch

The glass is then stored in warehouses, and which are then dispatched to the corresponding locations.

Life Cycle stages

A1-A3, Cradle to Gate - Mandatory Module

The product stage includes the extraction and processing of raw materials and energies, transport to the manufacturer, manufacturing and processing of glass.

A1, Raw materials supply:

This includes the extraction and processing of all raw materials and energy which occur upstream from the manufacturing process.

A2, Transport to the manufacturer:

The raw materials are transported to the manufacturing site. The modelling includes road, ship and/or train transportation of each raw material.

A3, Manufacturing:

This module includes the manufacture of products and the manufacture of packaging. The production of packaging material is considered at this stage. The processing of any waste arising from this stage is also included.

A4-A5, Construction process stage

The construction process is divided into 2 modules: A4, transport to the building site and A5, installation in the building.

A4, Transport to the building site:

This module includes transport from the production gate to the building site.

PARAMETER	VALUE/DESCRIPTION
Vehicle	Vehicle type: Lorry_11 metric ton India specific Transportation
Distance to construction site	1000 km
Bulk density of transported products*	2500 kg/m3

A5, Installation in the building:

The accompanying table quantifies the parameters for installing the product at the building site. All installation materials and their waste processing are included.

PARAMETER	VALUE/DESCRIPTION
Wastage of materials on the building site before waste processing, generated by the product's installation (specified by type)	According to PCR EN 17074, no waste is considered
Output materials (specified by type) as results of waste processing at the building site e.g. of collection for recycling, for energy recovery, disposal (specified by route)	None

B1-B7 De-construction

The stage is divided into the following modules:

- B1: Use
- B2: Maintenance
- B3: Repair
- B4: Replacement
- B5: Refurbishment
- B6: Operational energy use
- B7: Operational water use

The product has a reference service life of 30 years. This ensures that the product will last in situ with no requirements for repair, replacement or refurbishment throughout this period. Therefore, it has no impact at this stage, except for maintenance.

B2, Maintenance:

According to PCR EN 17074, only the maintenance by cleaning glass with water and cleaning agent is included in this study.

PARAMETER	VALUE/DESCRIPTION
Maintenance process	Water and cleaning agent
Maintenance cycle	Annual average
Ancillary materials for maintenance (e.g. cleaning agent, specify materials)	cleaning agent: 0.001 kg/m² of glass/year
Wastage material during maintenance (specify materials)	0 kg
Net freshwater consumption during maintenance	0.2 kg/m² of glass/year
Energy input during maintenance	None required during product lifetime

C1-C4, End of Life Stage

C1 - De-construction

The de-construction and/or dismantling of the product take part in the demolition of the entire building. Energy consumption for demolition is considered 0.01 kWh/m².

C2 - Transport of waste processing

It is estimated that there is no mass loss during the use of the product therefore the end-of-life product is assumed to have the same weight as the declared product whole. End of life products are assumed to be sent to the closest facilities such as landfills. Transportation distance to the closest disposal area is estimated 50 km.

C3 - Waste processing for reuse, recovery and/or recycling

It is assumed that 100% of products are collected at demolition sites and sent directly to landfill facilities.

C4 - Final Disposal

100% of the glass is landfilled. Distance to landfilled site is 50 km.

Biogenic balancing for packaging has been done in A5.

Table: Parameters C1-14 module

PARAMETER	VALUE/DESCRIPTION
Thickness (mm)	5 mm
Collection process specified by type	12.8 kg collected per 1 m2 0 kg collected with no separation between construction product
Recovery system specified by type	0 kg reuse 0 kg recycled 0 kg for energy recovery
Disposal specified by type	12.8 kg disposed of in landfill per 1 m2
Assumptions for scenario development (e.g. transportation)	50 km to landfill site and 0 km for recycling site
Transport by Truck	Lorry_11 metric ton
Transport by Truck	India specific Transportation

D - Reuse, recovery or recycling

No benefits are accounted for in the assessment.

Electricity Modelling

71% of electricity is taken from Electricity Grid of India and 29% from the solar. Climate impact as kg CO2 eq./kWh using the GWP-GHG indicator for Electricity Grid of India is **0.963 kg CO2 eq./kWh** and for Solar panel is **0.064 Kg CO2 eq./kWh**. Percentage of solar was determined using a weighted average of the total production from all the plants.

Environmental Performance

Results for 1m2 of Ceramic Frit Glass

Table: Potential environmental impact - mandatory indicators according to EN 15804:2012+A2:2019/AC:2021`

Results	for	1m2	of	Ceramic	Frit	Glass
---------	-----	-----	----	---------	------	-------

Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP- total	kg CO2 eq	2.06E+01	1.01E-01	7.15E-01	0.00	1.80E-01	0.00	0.00	0.00	0.00	0.00	6.16E-02	5.04E-02	0.00	3.50E-02	0.00
GWP- biogenic	kg CO2 eq	-7.15E-01	0.00	7.15E-01	0.00	3.01E-02	0.00	0.00	0.00	0.00	0.00	3.64E-05	1.49E-05	0.00	5.06E-05	0.00
GWP-fossil	kg CO2 eq	2.13E+01	1.01E-01	0.00	0.00	7.84E-02	0.00	0.00	0.00	0.00	0.00	6.17E-02	5.04E-02	0.00	3.50E-02	0.00
GWP- luluc	kg CO2 eq	6.30E-03	1.37E-06	0.00	0.00	7.18E-02	0.00	0.00	0.00	0.00	0.00	1.16E-06	6.84E-07	0.00	8.83E-06	0.00
ODP	kg CFC11 eq	7.26E-07	1.73E-08	0.00	0.00	4.39E-09	0.00	0.00	0.00	0.00	0.00	3.32E-10	8.65E-09	0.00	1.98E-09	0.00
АР	mol H+ eq	1.61E-01	8.68E-04	0.00	0.00	4.98E-04	0.00	0.00	0.00	0.00	0.00	3.96E-04	4.34E-04	0.00	1.58E-04	0.00
EP- freshwater	kg P eq	2.13E-03	5.75E-07	0.00	0.00	3.23E-05	0.00	0.00	0.00	0.00	0.00	3.78E-07	2.88E-07	0.00	2.52E-06	0.00
EP- marine	kg N eq	4.11E-02	4.32E-04	0.00	0.00	5.33E-04	0.00	0.00	0.00	0.00	0.00	5.01E-05	2.16E-04	0.00	5.57E-05	0.00
EP- terrestrial	mol N eq	3.75E-01	4.73E-03	0.00	0.00	1.38E-03	0.00	0.00	0.00	0.00	0.00	5.48E-04	2.36E-03	0.00	6.09E-04	0.00
POCP	kg NMVOC eq	9.70E-02	1.13E-03	0.00	0.00	3.21E-04	0.00	0.00	0.00	0.00	0.00	1.58E-04	5.64E-04	0.00	3.47E-04	0.00
ADPE	kg Sb eq	2.05E-04	2.96E-09	0.00	0.00	2.55E-06	0.00	0.00	0.00	0.00	0.00	3.14E-08	1.48E-09	0.00	7.33E-08	0.00
ADPF	MJ	1.86E+02	8.52E-01	0.00	0.00	1.38E+00	0.00	0.00	0.00	0.00	0.00	8.18E-01	4.26E-01	0.00	5.25E-02	0.00
WDP	m3 W eq. Dep	7.39E+02	1.57E-03	0.00	0.00	3.27E-01	0.00	0.00	0.00	0.00	0.00	2.13E+01	7.87E-04	0.00	5.47E-03	0.00
	GWP-fossil = Glo	bal Warming	Potential foss	il fuels; GWP	biogenio	= Global Wa	rming Po	tential b	iogenic;	GWP-lu	luc = Glo	bal Warming	Potential lan	d use an	d land use ch	iange;

Acronyms

GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine= Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals & metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Table: Potential Environmental impact-additional mandatory

	Results for 1m2 of Ceramic Frit Glass															
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	С3	C4	D
GWP - GHG	kg CO2 eq.	2.03E+01	1.01E-01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.03E-02	0.00	3.46E-02	0.00
Acronyms	GWP-GHG = Globa	al Warming Pote	ential													

`

^{*}The use of results of modules A1-A3 (A1-A5 for services) without considering the results of module C is discouraged.

^{*}The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks

Table: Potential environmental impact – additional voluntary indicators

	Results for 1m2 of Ceramic Float Glass															
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	С3	C4	D
PM/RI	[disease inc.]	9.17E-07	1.96E-09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.08E-09	9.80E-10	0.00	2.76E-09	0.00
IRP	[kBq U235 eq]	5.15E-01	5.98E-03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.34E-04	2.99E-03	0.00	1.48E-03	0.00
ET- freshwater	[CTUe]	2.09E+02	3.46E-01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.24E-01	1.73E-01	0.00	1.34E-01	0.00
HT-cancer	[CTUh]	3.73E-08	1.04E-12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.41E-10	5.18E-13	0.00	5.30E-12	0.00
HT-non- cancer	[CTUh]	3.59E-06	5.41E-11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.79E-08	2.71E-11	0.00	1.93E-10	0.00
SQP	[pt]	1.36E+02	1.08E-02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.30E-02	5.42E-03	0.00	3.21E+00	0.00
Acronyms		te matter emis		_					= Eco-tox	icity (fre	eshwate	r); HT-cancer	= Human tox	icity, cand	cer effects; HT-ı	non-

Table: Use of resources

					Resu	ılts foı	1m2	of Cer	amic F	rit Gla	ass					
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	С3	C4	D
PERE	MJ	2.44E+01	2.75E-03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.26E-03	1.38E-03	0.00	2.37E-02	0.00
PERM	MJ	0.00E+00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PERT	MJ	2.44E+01	2.75E-03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.26E-03	1.38E-03	0.00	2.37E-02	0.00
PENRM	MJ	0.00E+00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PENRE	MJ	2.07E+02	9.03E-01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.58E-01	4.52E-01	0.00	5.43E-02	0.00
PENRT	MJ	2.07E+02	9.03E-01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.58E-01	4.52E-01	0.00	5.43E-02	0.00
SM	Kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RSF	MJ	0.00E+00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NRSF	MJ	0.00E+00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FW	m3	2.51E+01	5.37E-05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.26E-01	2.68E-05	0.00	2.09E-03	0.00
	PERE = Use	of renewable pri	mary energy e	xcluding r	enewable	primary	energy res	sources us	ed as rav	material	s; PERM =	Use of renew	able primary e	nergy reso	ources used as	raw

materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy re-sources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

^{*}The use of results of modules A1-A3 (A1-A5 for services) without considering the results of module C is discouraged.

^{*}The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks

Table: Waste production

Results for 1m2 of Ceramic Frit Glass Indicator Unit A1-A3 Α4 **A5** В1 В2 В3 В4 **B5** В6 В7 **C1** C2 **C3 C4** D 7.14E-02 **HWD** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.57E-05 9.67E-04 0.00 8.11E-06 0.00 Kg **NHWD** 1.33E+00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.39E-04 3.83E-05 0.00 1.28E+01 0.00 **RWD** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Kg 0.00 0.00 0.00 0.00 0.00 HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; **Acronyms**

Table: Output flows

	Results for 1m2 of Ceramic Frit Glass															
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
Components for re- use	Kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MFR	Kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MER	Kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EEE	MJ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EET	MJ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acronyms	MFR = Ma	terials for recycl	ing; MER =	= Material	s for ene	rgy recove	ery; EEE =	Exported	electrical	energy; E	ET = Expo	rted ther	mal ener	gy		

^{*}The use of results of modules A1-A3 (A1-A5 for services) without considering the results of module C is discouraged.

^{*}The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks

Life Cycle Interpretation:

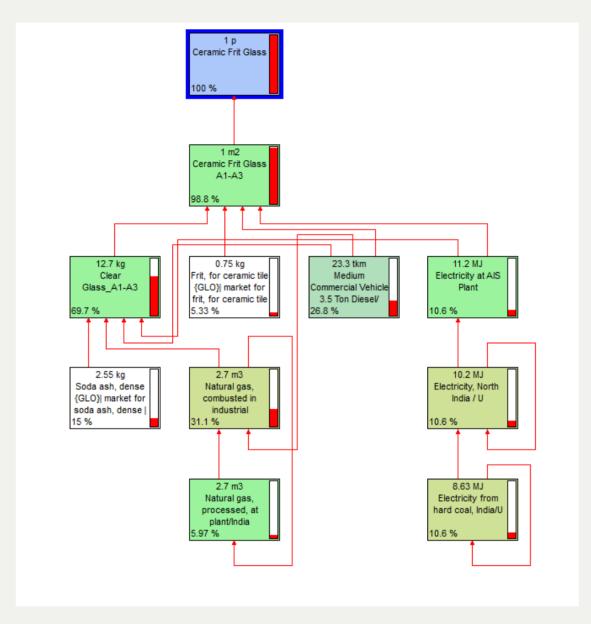


Figure: - Network diagram for GWP-GHG results as kg CO2 eq. for 1m2 of Ceramic Frit Glass

Environmental Impact of 1m2 Ceramic Frit Glass was calculated as per EN 15804+A2. The system boundary for Life cycle assessment was considered from Cradle to grave with Module D as per product category rules (PCR) for construction products. Clear glass GWP-GHG percentages shown above include contributions from electricity and transportation. That is the reason total is coming out to be more than 100%.

Module A1-A3, which covers raw material extraction, transport, and manufacturing, appeared as the highest impact contributor. Approximately 99% of the total environmental impact comes from the A1-A3 module.

References

- ISO 14040: 2006 Environmental management -- Life cycle assessment -- Principles and framework
- ISO 14044: 2006 Environmental management -- Life cycle assessment -- Requirements and guidelines
- ISO 14025: 2006 Environmental labels and declarations -- Type III environmental declarations -- Principles and procedures
- EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
- The International EPD® System / www.environdec.com
- The International EPD® System / The General Programme Instructions v 5.0
- The International EPD® System / PCR 2019:14 Construction products v1.2.5 (EN 15804:A2) /
- https://api.environdec.com/api/v1/EPDLibrary/Files/04600e1f-ab96-4e05-9040-08dabb52e166/Data
- Product Environmental Footprint Category Rules Guidance / https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCR guidance v6.3.pdf
- Ecoinvent 3.10 / http://www.ecoinvent.org/
- SimaPro LCA Software / https://simapro.com/
- AIS Glass Best Glass Solution Company in India Glass Manufacturers, Suppliers & Dealers

CERTIFICATE

The Certification Body of TÜV SÜD South Asia Private Limited

certifies that

Asahi India Glass Ltd.

Plot no T7, MIDC Industrial Area, Taloja, District Raigad – 410208, Maharashtra, India

has implemented Environmental and Occupational Health and Safety Management System

in accordance with ISO 14001:2015 & ISO 45001:2018

for the scope of

MANUFACTURING AND SUPPLY OF FLOAT GLASS (CLEAR AND TINTED), REFLECTIVE GLASS, TRENDZ GLASS, LACQUERED GLASS AND KRYSTAL GLASS. DESIGN, MANUFACTURE AND SUPPLY OF SOFT COAT GLASS.

The certificate is valid in conjunction with the main certificate from 2023-03-29 until 2026-01-15

Subject to successful completion of annual periodic audits.

The present status of this certificate can be obtained through TUV SUD website by scanning below QR code and by entering the certificate number (without spaces) on web page. Further clarifications regarding the status & scope of this certificate may be obtained by consulting the certification body at into in@to-sud-com

Certificate Registration No. EMS - 99 014 00806/02 OHSMS - 99 117 00463/02

Date of Initial certification: 2019-04-30

Issue Date: 2023-03-29 Rev. 00

Rahul Kale
Head of Certification Body
of TÜV SÜD South Asia Private Limited,
Mumbai
Member of TÜV SÜD Group

CERTIFICATE

The Certification Body of TÜV SÜD South Asia Private Limited

certifies that

Asahi India Glass Limited

Plot No. T-7, MIDC Industrial Area, Taloja Panyel, District - Raigad - 410208, Maharashtra, India

has implemented Quality Management System in accordance with ISO 9001:2015

for the scope of

Manufacturing and Supply of Float Glass (Clear & Tinted), Reflective Glass, Frosted & Backpainted Glass. Design, Manufacturing and Supply of Soft Coat Glass

The certificate is valid from 2023-04-25 until 2026-04-24

Subject to successful completion of annual periodic audits The present status of this certificate can be obtained through TUV SUD website by scanning below QR code and by entering the certificate number (without spaces) on web page. Further clarifications regarding the status & scope of this certificate may be obtained by consulting the certification body at info in@tuvsud.com

Certificate Registration No. 99 100 17590

Date of Initial certification: 2017-04-25

Issue Date: 2023-02-19 Rev. 00

Head of Certification Body of TÜV SÜD South Asia Private Limited, Mumbai Member of TÜV SÜD Group

CERTIFICATE

The Certification Body of TÜV SÜD South Asia Private Limited

certifies that

Asahi India Glass Ltd.

Plot no T7, MIDC Industrial Area, Taloja, District Raigad - 410 208, Maharashtra, India

has implemented Energy Management System in accordance with ISO 50001:2018 for the scope of

MANUFACTURING & SUPPLY OF FLOAT GLASS (CLEAR & TINTED). REFLECTIVE GLASS, TRENDZ GLASS, KRYSTAL GLASS. DESIGN, MANUFACTURING AND SUPPLY OF SOFT COAT GLASS.

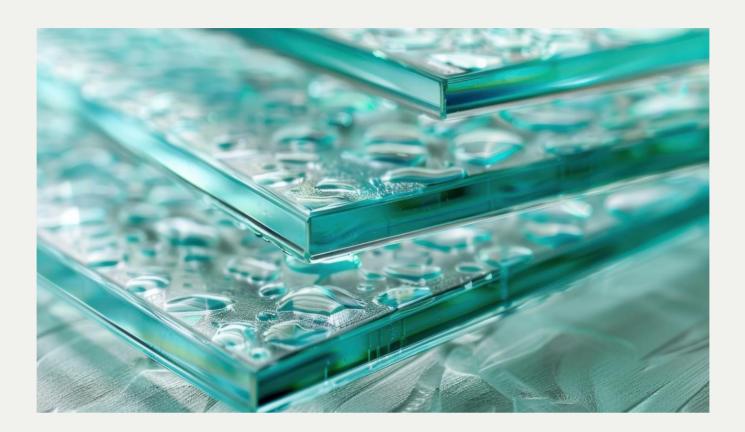
> The certificate is valid in conjunction with the main certificate from 2024-02-26 until 2026-12-19

Subject to successful completion of annual periodic audits The present status of this certificate can be obtained through TUV SUD website by scanning below QR code and by entering the certificate number (without spaces) on web page. Further clarifications regarding the status & scope of this certificate may be obtained by consulting the certification body at info info

Certificate Registration No. 99 118 00048/02

Date of Initial certification: 2019-01-25

Issue Date: 2024-02-26 Rev. 00


Rahul Kale Head of Certification Body of TÜV SÜD South Asia Private Limited. Mumbai Member of TÜV SÜD Group

Third Party Verifier

Sunil Kumar

SimaPro partners for India & Sri Lanka, SIPL Pvt Ltd <a href="https://www.sipl-sustainability.com/sunil@sipl-sunil@sipl-

LCA and EPD Consultant

The ESG Advisory

Flat No 10, 3rd flr, 'Avadhpuri' Hsg Soc, Opp. Karishma Soc, Near Karishma Traffic Signal, 127-Karve Road, Kothrud, Pune- 411029 suraj@theesgadvisory.in

Owner of the EPD

Asahi India Glass Ltd.,

Taloja MIDC, Plot- T7, MIDC Road, Mumbai, Raigad, Maharashtra, 410208

Contact Person: Mr. Nagendra Kumar Email: nagendra.kumar@aisglass.com

